首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   599篇
  免费   14篇
  国内免费   1篇
测绘学   11篇
大气科学   55篇
地球物理   146篇
地质学   202篇
海洋学   34篇
天文学   114篇
自然地理   52篇
  2021年   9篇
  2020年   7篇
  2019年   11篇
  2018年   7篇
  2017年   6篇
  2016年   11篇
  2015年   17篇
  2014年   13篇
  2013年   24篇
  2012年   12篇
  2011年   16篇
  2010年   23篇
  2009年   30篇
  2008年   32篇
  2007年   19篇
  2006年   20篇
  2005年   18篇
  2004年   24篇
  2003年   14篇
  2002年   26篇
  2001年   19篇
  2000年   19篇
  1999年   14篇
  1998年   6篇
  1997年   12篇
  1996年   12篇
  1995年   13篇
  1994年   12篇
  1993年   5篇
  1991年   8篇
  1990年   9篇
  1989年   8篇
  1988年   4篇
  1987年   6篇
  1986年   3篇
  1985年   4篇
  1984年   10篇
  1983年   6篇
  1982年   8篇
  1981年   7篇
  1980年   8篇
  1979年   14篇
  1978年   9篇
  1977年   7篇
  1976年   8篇
  1975年   8篇
  1974年   5篇
  1973年   9篇
  1972年   7篇
  1944年   4篇
排序方式: 共有614条查询结果,搜索用时 15 毫秒
11.
Resilience thinking is an important addition to the range of frameworks and approaches that can be used to understand and manage complex social–ecological systems like small-scale fisheries. However, it is yet to lead to better environmental or development outcomes for fisheries stakeholders in terms of food security, improved livelihoods and ecological sustainability. This paper takes an empirical approach by focusing on the fundamentals of resilience thinking to evaluate its usefulness in developing relevant management interventions in small-scale fisheries in the Niger River Basin in West Africa. The paper presents the outputs of a participatory assessment exercise where both fishery communities and local experts were involved at two different scales. The resilience frame used was designed to facilitate the identification of socially defined thresholds that help delineate the desirability of the current system configuration and provides a diagnosis framework that tailors management solutions to problems in local context. The analysis highlights some key contributions from resilience thinking to the challenge of diagnosis in small-scale fisheries management in developing countries, as well as important contributions that emerge from taking a pragmatic and critical approach to its application.  相似文献   
12.
13.
During the 1st Lagrangian experiment of the North Atlantic Regional Aerosol Characterisation Experiment (ACE‐2), a parcel of air was tagged by releasing a smart, constant level balloon into it from the Research Vessel Vodyanitskiy . The Meteorological Research Flight's C‐130 aircraft then followed this parcel over a period of 30 h characterising the marine boundary layer (MBL), the cloud and the physical and chemical aerosol evolution. The air mass had originated over the northern North Atlantic and thus was clean and had low aerosol concentrations. At the beginning of the experiment the MBL was over 1500 m deep and made up of a surface mixed layer (SML) underlying a layer containing cloud beneath a subsidence inversion. Subsidence in the free troposphere caused the depth of the MBL to almost halve during the experiment and, after 26 h, the MBL became well mixed throughout its whole depth. Salt particle mass in the MBL increased as the surface wind speed increased from 8 m s−1 to 16 m s−1 and the accumulation mode (0.1μm to 3.0 μm) aerosol concentrations quadrupled from 50 cm−3 to 200 cm−3. However, at the same time the total condensation nuclei (>3 nm) decreased from over 1000 cm−3 to 750 cm−3. The changes in the accumulation mode aerosol concentrations had a significant effect on the observed cloud microphysics. Observational evidence suggests that the important processes in controlling the Aitken mode concentration which, dominated the total CN concentration, included, scavenging of interstitial aerosol by cloud droplets, enhanced coagulation of Aitken mode aerosol and accumulation mode aerosol due to the increased sea salt aerosol surface area, and dilution of the MBL by free tropospheric air.  相似文献   
14.
15.
A Cascadia subduction-zone earthquake has the potential to generate tsunami waves which would impact more than 1000 km of coastline on the west coast of the United States and Canada. Although the predictable extent of tsunami inundation is similar for low-lying land throughout the region, human use of tsunami-prone land varies, creating variations in community exposure and potential impacts. To better understand such variations, land-cover information derived from midresolution remotely-sensed imagery (e.g., 30-m-resolution Landsat Thematic Mapper imagery) was coupled with tsunami-hazard information to describe tsunami-prone land along the Oregon coast. Land-cover data suggest that 95% of the tsunami-prone land in Oregon is undeveloped and is primarily wetlands and unconsolidated shores. Based on Spearman rank correlation coefficients (rs), correlative relationships are strong and statistically significant (p < 0.05) between city-level estimates of the amount of land-cover pixels classified as developed (impervious cover greater than 20%) and the amount of various societal assets, including residential and employee populations, homes, businesses, and tax-parcel values. Community exposure to tsunami hazards, described here by the amount and relative percentage of developed land in tsunami-prone areas, varies considerably among the 26 communities of the study area, and these variations relate to city size. Correlative relationships are strong and significant (p < 0.05) for community exposure rankings based on land-cover data and those based on aggregated socioeconomic data. In the absence of socioeconomic data or community-based knowledge, the integration of hazards information and land-cover information derived from midresolution remotely-sensed imagery to estimate community exposure may be a useful first step in understanding variations in community vulnerability to regional hazards.  相似文献   
16.
17.
One of the most significant challenges faced by hydrogeologic modelers is the disparity between the spatial and temporal scales at which fundamental flow, transport, and reaction processes can best be understood and quantified (e.g., microscopic to pore scales and seconds to days) and at which practical model predictions are needed (e.g., plume to aquifer scales and years to centuries). While the multiscale nature of hydrogeologic problems is widely recognized, technological limitations in computation and characterization restrict most practical modeling efforts to fairly coarse representations of heterogeneous properties and processes. For some modern problems, the necessary level of simplification is such that model parameters may lose physical meaning and model predictive ability is questionable for any conditions other than those to which the model was calibrated. Recently, there has been broad interest across a wide range of scientific and engineering disciplines in simulation approaches that more rigorously account for the multiscale nature of systems of interest. In this article, we review a number of such approaches and propose a classification scheme for defining different types of multiscale simulation methods and those classes of problems to which they are most applicable. Our classification scheme is presented in terms of a flowchart (Multiscale Analysis Platform), and defines several different motifs of multiscale simulation. Within each motif, the member methods are reviewed and example applications are discussed. We focus attention on hybrid multiscale methods, in which two or more models with different physics described at fundamentally different scales are directly coupled within a single simulation. Very recently these methods have begun to be applied to groundwater flow and transport simulations, and we discuss these applications in the context of our classification scheme. As computational and characterization capabilities continue to improve, we envision that hybrid multiscale modeling will become more common and also a viable alternative to conventional single‐scale models in the near future.  相似文献   
18.
The pulsating DA white dwarfs are the coolest degenerate stars that undergo self-driven oscillations. Understanding their interior structure will help us to understand the previous evolution of the star. To this end, we report the analysis of more than 200 h of time-resolved CCD photometry of the pulsating DA white dwarf star EC 14012−1446 acquired during four observing epochs in three different years, including a coordinated three-site campaign. A total of 19 independent frequencies in the star's light variations together with 148 combination signals up to fifth order could be detected. We are unable to obtain the period spacing of the normal modes and therefore a mass estimate of the star, but we infer a fairly short rotation period of  0.61 ±0.03 d  , assuming the rotationally split modes are  ℓ= 1  . The pulsation modes of the star undergo amplitude and frequency variations, in the sense that modes with higher radial overtone show more pronounced variability and that amplitude changes are always accompanied by frequency variations. Most of the second-order combination frequencies detected have amplitudes that are a function of their parent mode amplitudes, but we found a few cases of possible resonantly excited modes. We point out the complications in the analysis and interpretation of data sets of pulsating white dwarfs that are affected by combination frequencies of the form   f A + f B − f C   intruding into the frequency range of the independent modes.  相似文献   
19.
Abstract

The term “environmental flows” is now widely used to reflect the hydrological regime required to sustain freshwater and estuarine ecosystems, and the human livelihoods and well-being that depend on them. The definition suggests a central role for ecohydrological science to help determine a required flow regime for a target ecosystem condition. Indeed, many countries have established laws and policies to implement environmental flows with the expectation that science can deliver the answers. This article provides an overview of recent developments and applications of environmental flows on six continents to explore the changing role of ecohydrological sciences, recognizing its limitations and the emerging needs of society, water resource managers and policy makers. Science has responded with new methods to link hydrology to ecosystem status, but these have also raised fundamental questions that go beyond ecohydrology, such as who decides on the target condition of the ecosystem? Some environmental flow methods are based on the natural flow paradigm, which assumes the desired regime is the natural “unmodified” condition. However, this may be unrealistic where flow regimes have been altered for many centuries and are likely to change with future climate change. Ecosystems are dynamic, so the adoption of environmental flows needs to have a similar dynamic basis. Furthermore, methodological developments have been made in two directions: first, broad-scale hydrological analysis of flow regimes (assuming ecological relevance of hydrograph components) and, second, analysis of ecological impacts of more than one stressor (e.g. flow, morphology, water quality). All methods retain a degree of uncertainty, which translates into risks, and raises questions regarding trust between scientists and the public. Communication between scientists, social scientists, practitioners, policy makers and the public is thus becoming as important as the quality of the science.
Editor Z.W. Kundzewicz

Citation Acreman, M.C., Overton, I.C., King, J., Wood, P., Cowx, I.G., Dunbar, M.J., Kendy, E., and Young, W., 2014. The changing role of ecohydrological science in guiding environmental flows. Hydrological Sciences Journal, 59 (3–4), 433–450  相似文献   
20.
A number of aquatic organisms have demonstrated an ability to modulate sediment deposition in tropical and temperate stream systems, but little is known about the impact of similar benthic grazing processes in temperate pond systems. Using exclosure experiments in mesocosms, we used tadpoles of the western toad (Anaxyrus boreas) to investigate two questions: (1) can grazing activities of tadpoles of the western toad in ponds reduce sediment accrual on grazing surfaces (e.g. via bioturbation or ingestion); and (2) do these grazing activities contribute to enhanced periphyton biomass and chlorophyll a content of benthic matter. Mesocosms received pulses of fine sediment weekly over 8 weeks to simulate allochthonous surface inputs following rainstorms. Accumulated sediment and periphyton matter on exposed and grazing-restricted substrate surfaces were measured weekly. Tadpole grazing activity significantly reduced the standing stock of periphyton on open grazing surfaces by 80% in controls. Under sediment-additions, tadpoles effectively removed settled particulate matter from exposed grazing surfaces, but no corresponding increase in periphyton biomass was observed. These results suggest that tadpoles can impact the dynamics of sediment distribution in ponds as well as streams, providing support for a role as “ecosystem engineers” in these habitats.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号